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The two limits for modeling vibrating thin films, viz as a plate or as a membrane, are discussed. 
In terms of these limits the sources of experimental uncertanties are identified and the 
advantages of using films which can be modeled as membranes are explained. The mathematical 
formalism for treating films as vibrating membranes is developed and relations for 
self-consistency checks are presented. The drive mechanisms used to generate vibrations in the 
films are also discussed. 

I. INTRODUCTION 

The mechanical properties of thin films are often de- 
termined from the frequencies of their normal modes of 
vibration. The frequencies of these modes are most often 
calculated assuming that the material behaves as a “plate,” 
i.e., that the dominant restoring forces are due to the 
“bending” of the material.’ A good example is the “vibrat- 
ing reed”’ which models a thin film as a rigid rectangular 
plate (clamped at one end) and measures its resonant 
modes to find its flexural modulus. Experimentally, how- 
ever, the measurement of the film’s bending force is com- 
plicated. Being proportional to the film thickness, at small 
thicknesses, it may be dominated by stray forces that are 
normally present under experimental conditions. 

There are two main sources from which stray forces 
originate: (i) clampings of the film and (ii) deformations 
such as warpings and wrinkles. Systematic measurements 
on clamped thin metal disks have shown (at thicknesses 
below 25 pm) that clamping forces are sufficiently large to 
considerably shift or alter the resonant modes.3 Similar 
measurements have been performed by vibrating reed on 
(5 pm thick) rectangular Cu/Ni films and have revealed 
that deformations can influence the resonant modes by 
200%-3OC~%.~ These facts (as well as some other contro- 
versial results”4-6) h ave raised doubts whether techniques 
based on plate modeling produce reliable results. 

When the dominant restoring force of a film is the 
tension applied along its boundary it will behave as a 
“membrane.” In a recent article we described how an elas- 
tic property could be measured by forming a film into a 
membrane. Here we present detailed formal investigations 
which show a number of advantages in using membrane 
techniques when dealing with thin film samples. Most im- 
portantly we find the effects of stray forces can easily be 
eliminated. 

Below we will discuss the conditions that must be met 
in order for a circular film clamped at its outer boundary to 
be treated as a plate or as a membrane. Expressions for the 

errors introduced when treating a film as a membrane 
(plate) will be discussed. The roles of plate rigidity and 
tensions applied during the mounting of the sample will be 
evaluated to determine which approximation is more ap- 
propriate. 

II. BASIC FORMALISM 

We model a thin film as an elastically isotropic circular 
disk under a uniform biaxial tension T. Ignoring the effects 
of shear (tension), the expression for its vibrational energy 
is written as 

‘%b = Uplate + u membrane + KE- (1) 

u plate is the plate bending energy, Umembrane is the film’s 
restoring potential energy which comes from its tension, 
and KE is the kinetic energy. Taking the plane of the film 
in the x-y plane, and writing in polar coordinates the inte- 
gral expressions for each teim7 we have 

Evib = 

i ag2 
+7 z i )I rdrd9 

(2) 

where 5‘ is displacement perpendicular to the film’s plane, t 
is time, 7 is the Poisson’s ratio, E is the Young’s modulus, 
h is the film thickness, II is the radius, T is tension (force 
per unit area), and p is the density. This equation can be 
simplified by variational minimization to yield the differ- 
ential equation of the film’s motion; 

Eh2 2 

12(1 +) V44- TV’C+P$=O. (3) 
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For simple harmonic motion c = {e’“‘, where w is the 
angular frequency. In terms of the Laplacian V2, Eq. (3) 
now represents a second-order polynomial and can be writ- 
ten as 

(v2+cY2)(v2--p2)~=o. (4) 

The expressions for a2 and p2 are 

a2,f12= - [&T- ,/T2+ (pw2h2E)/3(1 y2>]/ 

[Eh2/6(1 - q2)]. (5) 

The solutions to Laplace’s equation are well known and the 
most general solution for 6 (in polar coordinates) is given 
below8 

&r,e) = ;; (me) [AJm(ar) + BInI I. 

J,,, represents an mth order Bessel function and I, is its 
hyperbolic counterpart whose argument /3r is an imaginary 
variable. A and B are constants to be determined from the 
boundary conditions. 

In the case of large T’s, membrane properties will 
dominate and the problem can be simplified by noting that 
p-0. Using Im’s polynomial expansion, this implies that 
I,(Pr) - 0, and since we are dealing with a film whose 
edges are clamped at r = Q [i.e., ((a,@ = 01, we have 
J,,Aaa) - 0. This condition requires the values of au to be 
equal to the roots of J,. After some algebra the expression 
for the film’s fundamental mode is given by 

vol = 0.3826 $ + 
’ 

(7) 

where ‘~01 is the frequency of the fundamental mode, and 
the subscripts, respectively, denote the number of the nodal 
lines, and circles. Setting E = 0, this expression correctly 
reduces to that of an ideal membrane with no plate rigidity. 

Another method to find the film’s fundamental mode is 
by approximate means. For this purpose we use the 
Rayleigh-Ritz method and we choose Jo(flr) as the trial 
function--Jo(@) is the exact solution when E = 0. The 
integrals involving Bessel functions were calculated by us- 
ing the computer program Mathematics (version 1.1).9 
The result of Rayleigh-Ritz approximation is equal to the 
result obtained using Eq. (7)-to the third decimal place. 

When T is small the film’s plate rigidity will dominate 
its restoring force. In the strictest mathematical sense the 
disk will behave as a rigid plate only when T = 0. Exper- 
imentally, however, this condition need not be fulfilled and 
the film can still be considered as a plate as long as T is 
small. The degree to which T affects the vibrational modes 
can be examined by using the Rayleigh-Ritz method. For 
the trial function we use the wave function of the funda- 
mental mode of a rigid circular plate with no tension at its 
boundary. Its functional form is given by8 

t(r,e) a I~o(P)Jo(v) - Jo(PVO(V)I, (8) 

where y is a constant equal to 1 .Ol %/a. By using Mathe- 
matica we evaluate the integrals and find that resonant 
frequency is given by 

ac coil 

E 

FIG. 1. Schematic diagram of the vibrating membrane device. F is the 
film, T is tension, K is the circular knife-edge support, and E is the 
receiver electrode. 

T 
v& = 1.0476 --- + 

* (9) 

From Eq. (9) it can be seen that for typical values [of 
E/( 1 - 7’) = lo9 Pa, h = 10 pm, II = 0.005 m] the 
tension must satisfy T Q lo3 Pa in order for a film to be 
treated as a plate. Tensions this low are almost impossible 
to achieve since they are comparable to the tension pro- 
duced by the films own weight. If in the parameters given 
above one requires the tension affect the resonant frequen- 
cies of less than l%, T must be less than 20 Pa. We will 
therefore now focus, in more detail, on membranes and 
discuss the advantages of using them. 

Returning to Eq. (7) and the estimate given above, it 
can be seen that it is relativelly simple to apply tensions 
which are sufficiently large to guarantee that the films be- 
have as membranes and that their normal modes are given 
by Eq. (7) with negligible contribution from their plate 
rigidity. 

The schematic of the setup for membrane measure- 
ments is shown in Fig. 1. We have used this setup for 
biaxial modulus measurements of metallic3~*0 and polymer 
films.” As shown in the figure the thin film is tensioned 
over a circular knife-edge support. An electrode positioned 
beneath the film detects its vibrations (induced by a coil) 
and its strain is measured using an optical microscope. In 
this design the clamping forces are uniformly produced by 
the film’s own biaxial tension, as it is stretched over the 
fixed knife-edge support. By this means (since the film is 
held under its own isotropic biaxial tension) no unknown 
clamping forces are introduced to interfere with the results 
of the measurements. 

Another advantage in using a membrane is that by 
using large tensions deformations are easily removed. 
Their removal eliminates their stress fields, or at least min- 
imizes their influence on resonant modes. In this respect a 
membrane is superior to a plate because its flexible behav- 
ior allows removal of deformations and unlike a plate it is 
not constrained to preserve the thin-film’s rigid behavior 
which in practice is difficult to achieve when large stray 
forces are present. 

These advantages have led to development of mem- 
brane techniques for metallic,31’0 polymer,” and semi- 
conducting’2”3 materials. Since these techniques do not use 
plate modeling they are free from problems due to stray 
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FIG. 2. Signal amplitude vs the square of frequency for a -15.5 pm 
aluminum film. The configurational representation of each mode is shown 
above its resonant peak. The arrows point at missing modes. These modes 
are labeled with v,,‘s; i and j are, respectively, the number of nodal circles 
and lines. 

forces and are thus capable of producing more reliable 
results. 

Ill. TENSION ANISOTROPY AND SPLITTING OF 
RESONANT MODES 

An anisotropic tension will cause the splitting of de- 
generate modes and the degree to which the modes are split 
is a  measure of anisotropy. The  anisotropy either comes 
from the film ’s own internal stresses or clamping forces at 
its boundaries. Here we will discuss the latter problem 
which comes from tensions to the film  during its mounting. 
W e  will use the Rayleigh-Ritz approximation to find ex- 
pressions for the frequencies of the first and second reso- 
nant modes of a  circular membrane.  To  simplify our cal- 
culations we assume E = 0. Since E is an  isotropic 
parameter this choice of E will not change the symmetry of 
the problem and thus affect the splitting of the modes. 

The  effects of anisotropy are seen in F ig. 2  which 
shows the resonant modes of a  - 15.5+m-thick Al film . 
The second mode is doubly degenerate and its splitting is 
- 100 Hz. The  splitting represents a  - 1% deviation from 
the expected value for this mode.  

W e  assume that the total tension applied to the film  
can be  written as 

T Total = T+ G-t@, (10) 

where T is tension explicity applied during the experiment 
and which is independent of 0  by design and ef (0) is the 
tension applied during mounting and which could be  di- 
rection dependent.  f( 0) is an  arbitrary function of 8, and 
E is a  tension that is assumed to be  very small compared to 
T. The approximate solutions for the first ( fundamental) 
and second modes are, respectively, shown below: 

(11) 

T 
vll = 0.6098 J I( 6 

1 +&f-w) 

h(O.148 17;) v’p2+$), (12) 

where ( f( f3) ) is the average of f( 0) and defined as 

(f(e)) = & s,“” fwe, (13) 

and similarly, 

p  = (f(e) cos 2e), (14) 

q= (f(e) 3h2e). (15) 

In Eq. ( 11) the first term represents the unperturbed por- 
tion of vol and the second term gives the shift due to ten- 
sion’s anisotropy. Equation ( 12) shows that yll is split into 
two parts. These parts are symmetrically posit ioned about 
a  central f requency which itself is shifted with respect to 
vi,‘s unperturbed portion (the first term). Equation ( 12) 
also shows that the splitting should decrease as tension is 
increased. Experimentally we do find that the splitting of 
the second mode decreases as T is increased; it does not 
however decrease as rapidly as predicted by Eq. ( 12). W e  
believe that this could be  due to other sources of film  an- 
isotropy such as thickness variations or to our assumption 
that E and/or f( t9) in Eq. ( 10) are also weakly dependent  
on  the tension T. 

W e  have verified that the ma jor contribution to the 
splitting of the second mode is due to anisotropic tensions 
during mounting since in all cases where splittings larger 
than 2% were observed, they could be  greatly reduced by 
remounting the sample. In all our measurements the self- 
consistency of vol and yll, and the splitting of the latter are 
an  integral part of the experiment and are routinely carried 
out each time  a  new sample is mounted. 

The  influence of a  membrane’s rigidity in the presence 
of an  isotropic tension is of interest where thick films such 
as polymer samples are studied. Using the approximation 
techniques described above and the same trial functions, 
we find that the first and second vibrational modes are 
given by 

2(TE+ f-L) ‘f(e))) ’ 
(16) 

(f(w) 

where Cl = 25.49690 and A = 64.73140. Here, D is de- 
fined as Eh2/12a2 ( 1  - 77) 2. The  rest of the parameters are 
the same as already described above. An interesting fea- 
ture, as expected, is that the sample’s rigidity, being iso- 
tropic, only adds to tension and by itself does not change 
the functional forms of the expressions of the resonant 
modes. 

IV. DRIVE MECHANISM 

Although the capacitive system used to detect the res- 
onant frequencies was described in Ref. 10, it was only 
briefly ment ioned that the vibrations could be  induced by 
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Horizontal Magnetic Field (Gauss) 

FIG. 3. Signal amplitude vs horizontal B field intensity for a 6 pm alu- 
minum film. 

either an electrostatic interaction or by a coil. The former 
is intuitively simple and requires no further description, 
The second technique which is less obvious but which has 
a number of advantages is briefly described in this section. 

The force exerted by a coil above a conducting plane 
has been the subject of numerous articles.14 The rigorous 
method for calculating this force has been given by Dodd 
and Deeds.‘5*‘6 For the case of a vibrating membrane the 
theory can be simplified in terms of Lorentz interactions of 
eddy currents and magnetic fields. The magnetic fields are 
considered to be either induced by the coil or imposed by 
external means. Disregarding the geometrical terms, and 
assuming axial symmetry, for each case we write the ver- 
tical component of the force as follows: 

F, = ( Jdeiwt ) (B, eiat) , (18) 

J’, = (J/“‘) (&atic) * (19) 
In these equations the eddy current is assumed to have 
only azimuthal component J4, and the radial horizontal 
component of the field induced by the coil is denoted by 
B, . The coil’s angular frequency is w. Bshtic is a dc field, 
and is imposed parallel to the plane of the conducting film. 
Equation ( 18) is the product of two dynamic terms and 
represents a force whose frequency, in absence of static 
fields, is twice the frequency of the coil. By surrounding the 
membrane by a mu-metal shield we have verified that res- 
onances do indeed only occur at 2~. Equation (19) shows 
a different behavior when a static field is involved. Since 
this field has no time dependence the resonant frequency 
occurs at w. For a field as small as the earth’s, the signal 
amplitude is sufficiently large to be easily detected. To in- 
vestigate the effects of much larger fields an electromagnet 
was placed with its field parallel to the membrane’s plane. 
Figure 3 shows the signal amplitude versus the magnetic 
field intensity. A linear behavior is found consistent with 
the prediction of Eq. ( 19). The use of dc field has the 
advantage that large amplitudes can be generated to detect 
higher harmonics of the membrane. Figure 2 is a typical 
plot obtained by applying a field of 100 G. 

V. CONCLUSION 
The membrane technique measures the elastic modulus 

of a film by finding its stress/strain relationship. Stress is 
measured dynamically from the resonant modes, whereas 
strain is found by using a static method. Its advantage over 
other techniques (such as the vibrating reed) is that the 
membrane technique is not based on plate modeling. The 
problem with the plate modeling is that it is valid only for 
thick films. The thin ones are easily disturbed by stray 
forces and, to the degree that stray forces cannot be elim- 
inated, the validity of the plate modeling cannot be en- 
sured. In the membrane technique, problems posed by 
stray forces (from the clampings and deformations) are 
easily resolved by application of large tensions. The clamp- 
ing forces cause no problems because the membrane is held 
in place under its own tension. For this reason stress mea- 
surements are free from outside interference, since no ex- 
ternal forces are used. Moreover, since large tensions are 
applied deformations are removed, and their influence 
(typically of the order of the tllm’s plate bending force) if 
they still persist can usually be ignored as being too small 
compared to the tension’s restoring force. The membrane 
technique also offers another advantage in that it requires 
no knowledge of film thickness. This is very useful when 
films are studied whose exact thicknesses are not known. 

In this article the basic formalism for the vibrational 
modes of a circular film was developed and its limiting 
behavior as a plate or as a membrane was discussed. The 
advantages in using a membrane were explained and it was 
shown that the behavior of a membrane can be self-consis- 
tently examined against the frequency of its resonant 
modes. Also the shift in a membrane’s fundamental mode 
due to its plate rigidity was found and perturbations caused 
by anisotropies in tension were derived for its first two 
modes by approximate means. Moreover, the theory be- 
hind the driving mechanism was explained and experimen- 
tally tested, and finally utilized to excite the higher har- 
monics of a vibrating membrane. 
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